Drug-protein interaction with Vpu from HIV-1: proposing binding sites for amiloride and one of its derivatives.

نویسندگان

  • C G Kim
  • V Lemaitre
  • A Watts
  • W B Fischer
چکیده

Vpu is an 81-amino-acid auxiliary protein of the genome of HIV-1. It is proposed that one of its roles is to enhance particle release by self-assembling to form water-filled channels enabling the flux of ions at the site of the plasma membrane of the infected cell. Hexamethylene amiloride has been shown to block Vpu channel activity when the protein is reconstituted into lipid bilayers. In a docking approach with monomeric, pentameric and hexameric bundle models of Vpu corresponding to the transmembrane part of the protein, a putative binding site of hexamethylene amiloride is proposed and is compared with the site for the nonpotent amiloride. The binding mode for both ligands is achieved by optimizing hydrogen bond interactions with serines. Binding energies and binding constants are the lowest for protonated hexamethylene amiloride in the pentameric bundle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of amiloride and one of its derivatives with Vpu from HIV-1: a molecular dynamics simulation.

Vpu is an 81-residue membrane protein, with a single transmembrane segment that is encoded by HIV-1 and is involved in the enhancement of virion release via formation of an ion channel. Cyclohexamethylene amiloride (Hma) has been shown to inhibit ion channel activity. In the present 12-ns simulation study a putative binding site of Hma blockers in a pentameric model bundle built of parallel ali...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

INVESTIGATIONS ON THE DRUG-PROTEIN IN TERAC TION OF CERTAIN NEW POTENTIAL LOCAL ANAESTHETICS

Generally, plasma proteins owe their binding capacity to the presence of aminoacid units which enter into intra- and intermolecular hydrophobic bonding with a diverse range of endo- and exogenous chemical substances. The intermolecular interactions between the hydrophobic areas of drug molecules and those of plasma proteins play an important role in drug-macromolecular complex formation and...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 386 7-8  شماره 

صفحات  -

تاریخ انتشار 2006